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Abstract. An independent system of words for a finite automaton is
a set of k words taking any state s into k distinct states which do not
depend on s. We present some recent application of independent sets to
the synchronization problem and to synchronizing colorings of aperiodic
graphs. In particular, we prove that if an aperiodic, strongly connected
digraph of costant outdegree with n vertices has an Hamiltonian path,
then it admits a synchronizing coloring with a reset word of length 2(n−
2)(n− 1) + 1.

An important concept in Computer Science is that of synchronizing automa-
ton. A deterministic automaton is called synchronizing if there exists an input-
sequence, called synchronizing or reset word, such that the state attained by the
automaton, when this sequence is read, does not depend on the initial state of
the automaton itself. Two fundamental problems which have been intensively in-
vestigated in the last decades are based upon this concept: the Černý conjecture
and the Road coloring problem.

The Černý conjecture [8] claims that a deterministic synchronizing n-state
automaton has a reset word of length not larger than (n− 1)2. This conjecture
has been shown to be true for several classes of automata (cf. [2–4, 6–8, 10–
14, 17]). The interested reader is refered to [17] for a historical survey of the
Černý conjecture and to [5] for synchronizing unambiguous automata. In this
theoretical setting, two results recently proven in [7] and [4] respectively, are
relevant to us.

In [7], the authors have introduced the notion of independent set of words.

Definition 1. Let A = 〈Q,A, δ〉 be an automaton. A set of k words W =
{w0, . . . , wk−1} is called independent if there exist k distinct states q0, . . . , qk−1

of A such that, for all s ∈ Q,

{δ(s, w0), . . . , δ(s, wk−1)} = {q0, . . . , qk−1}.

The set R = {q0, . . . , qk−1} will be called the range of W.



An automaton is called locally strongly transitive if it has an independent set of
words. The main result of [7] is that any synchronizing locally strongly transitive
n-state automaton has a reset word of length not larger than (k−1)(n+LW )+`W ,
where k is the cardinality of an independent set W and LW and `W denote
respectively the maximal and the minimal length of the words of W . In the
case where all the states of the automaton are in the range, the automaton A
is said to be strongly transitive. Strongly transitive automata have been studied
in [6]. This notion is related with that of regular automata introduced in [14]. A
remarkable example of locally transitive automata is that of 1-cluster automata,
recently investigated in [4]. A n-state automaton is called 1-cluster if there exists
a letter a such that the graph of the automaton has a unique cycle labelled by
a power of a. Indeed, denoting by k the length of the cycle, one easily verifies
that the words

an−1, an−2, . . . , an−k

form an independent set of the automaton whose range is the set of vertices of
the cycle. In [4] it is proven that every 1-cluster synchronizing n-state automaton
has a reset word of length not larger than 2(n− 1)(n− 2) + 1. Let A = 〈Q,A, δ〉
be a n-state automaton. We say that a set of states K of A is reducible if,
for some word w, δ(K,w) is a singleton. Given two states p, q of A, we say
that the pair (p, q) is stable if, for all u ∈ A∗, there exists v ∈ A∗ such that
δ(p, uv) = δ(q, uv). The set of stable pairs is a congruence of the automaton
A, which is called stability relation. This congruence, introduced in [9], plays a
fundamental role in the solution [15] of the Road coloring problem. It is easily
seen that an automaton is synchronizing if and only if the stability relation is
the universal equivalence. A set K ⊆ Q is stable if for any p, q ∈ K, the pair
(p, q) is stable.

It is worth mentioning that any stable set K is reducible. Thus, even if A
is not synchronizing, one may want to evaluate the minimal length of a word w
such that Card(δ(K,w)) = 1. The main result on this point is the following.

Theorem 1. Let A be a n-state automaton with an independent set W. If A is
not synchronizing, then for any stable set K there exists a word v such that

Card(δ(K, v)) = 1 , |v| ≤
(

Card(W )
2

− 1
)

(n+ LW − 1) + LW ,

where LW denotes the maximal length of the words of W.

Since any 1-cluster n-state automaton has an independent set W with LW =
n− 1, taking into account that Card(W ) ≤ n, the following result follows from
Theorem 1.

Corollary 1. Let K be a stable set of a 1-cluster n-state automaton which is
not synchronizing. There exists a word v such that Card(δ(K, v)) = 1 and |v| ≤
(n− 1)2.



In the case where A is synchronizing, then Q itself is a stable set. With some
minor changes in the proof of Theorem 1, one obtains the following result which
refines the quoted bound of [7].

Theorem 2. Any synchronizing n-state automaton with an independent set W
has a reset word of length

(Card(W )− 1)(n+ LW − 1) + `W ,

where LW and `W denote respectively the maximal and the minimal length of
the words of W .

The second problem we have mentioned above is the Road coloring problem
which concerns the study of the synchronizing colorings of aperiodic graphs. In
the sequel, with the word graph, we will term a finite, directed multigraph with
all vertices of the same outdegree. A graph is aperiodic if the greatest common
divisor of the lengths of all cycles of the graph is 1. A graph is called an AGW-
graph if it is aperiodic and strongly connected. A synchronizing automaton which
is obtained by a labeling of the edges of a graph G will be called a synchronizing
coloring of G. The Road coloring problem asks for the existence of a synchronizing
coloring for every AGW-graph. This problem was formulated in the context of
Symbolic Dynamics by Adler, Goodwyn and Weiss and it is explicitly stated
in [1]. In 2007, Trahtman has positively solved this problem [15]. Trahtman’s
solution has electrified the community of formal language theories and recently
Volkov has raised the following problem [16].

Hybrid Černý–Road coloring problem. Let G be an AGW-graph. What is
the minimum length of a reset word for a synchronizing coloring of G?

It is worth to mention that Ananichev has found, for any n ≥ 2, an AGW-graph
of n vertices such that the length of the shortest reset word for any synchronizing
coloring of the graph is (n − 1)(n − 2) + 1 (see [16]). In [7], the authors have
proven that, given an AGW-graph G of n vertices, without multiple edges, such
that G has a simple cycle of prime length p < n, there exists a synchronizing
coloring of G with a reset word of length (2p− 1)(n− 1). Moreover, in the case
p = 2, that is, if G contains a cycle of length 2, then, also in presence of multiple
edges, there exists a synchronizing coloring with a reset word of length 5(n− 1).
Here, we continue the investigation of the Hybrid Černý–Road coloring problem
on a very natural class of digraphs, those having a Hamiltonian path. The new
theorem we prove is the following.

Theorem 3. Let G be an AGW-graph with n > 1 vertices. If G has a Hamil-
tonian path, then there is a synchronizing coloring of G with a reset word w of
length

|w| ≤ 2(n− 2)(n− 1) + 1.

The proof of Theorem 3 is based upon Corollary 1 and upon some techniques
and results on synchronizing colorings of graphs.
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